
Topics for Review for Midterm I in Calculus 10A

Instructor: Zvezdelina Stankova

1. Definitions

Be able to write precise definitions for any of the following concepts (where appropriate: both in words

and in symbols), to give examples of each definition, to prove that these definitions are satisfied in specific

examples. Wherever appropriate, be able to graph examples for each definition. What is/are:

(1) a function? an independent variable; a dependent variable?

(2) a domain; a range of a function?

(3) set notation for a variety of intervals, for intersections, unions, and complements of sets, for subsets,

for the empty set, for the set of even numbers or for odd numbers?

(4) the graph of a function? the vertical line test?

(5) a piecewise defined function?

(6) the function absolute value |x|?
(7) an increasing function; a decreasing function?

(8) an odd function; an even function?

(9) a linear, quadratic, polynomial, rational function? domains of these functions?

(10) a power, exponential, logarithmic function? domains of these functions?

(11) one-to-one (or injective) function? onto (or surjective) function?

(12) the horizontal line test?

(13) 1-1 correspondence (or bijective function)?

(14) inverse of a function? its graph in relation to the graph of the original function?

(15) a trigonometric function: sinx, cosx, tanx, cotx, and their inverses? domains of these functions?

(16) the composition f ◦ g of two functions f(x) and g(x)?

(17) a period of a function? doubling or halving time for an exponential function?

(18) vertical and horizontal shifts of graphs of functions and when do they occur?

(19) important and frequently used bases for exponential functions?

(20) log-plot of a function? log-log-plot? why do we use them? what functions are good for such a plot?

(21) limit of lim
x→�1

f(x) = �2 where each of the “boxes” can be a finite number or ±∞?

Example. To say that lim
x→−7

f(x) = 10 means that:

(a) f(x) can be made as close to 10 as we please, provided x is close enough to −7.

(b) every ε-goal around 10 can be achieved by f(x) provided x is close enough to −7.

(c) ∀ε > 0, f(x) falls within ε of 10 provided x is close enough to −7.

(d) ∀ε > 0 ∃δ > 0 such that |f(x)− 10| < ε whenever −7− δ < x < −7 + δ, x 6= −7.

(22) one-sided limit, e.g. lim
x→a−

f(x) = L, lim
x→a+

f(x) = −∞, etc.?

(23) vertical asymptote of f(x) at a? Horizontal asymptote of f(x)? (Using limits, perhaps?)

(24) What does it mean that a function f(x):

(a) is continuous at a? (Using limits, perhaps?)

(b) is continuous on (a, b)?

(c) has a removable, jump or infinite discontinuity at a?

(25) list of elementary continuous functions?

(26) the tangent line to the graph of a function f(x) at x = a? a secant line of the graph of f(x)? what

does it mean that f(x) has a vertical tangent at x = a?

(27) the average velocity and the instantaneous velocity of an object whose movement is given by f(t)?

(28) the derivative f ′(a) at x = a? What does it mean that f(x) is differentiable at a?

(29) the derivative function f ′(x)? What does it mean that f(x) is differentiable on (a, b)?



(30) implicit differentiation? When is it used?

(31) critical point of a function? local or global extremum? inflection point?

(32) logarithmic derivative? Where have we seen it and what is it good for?

(33) related rates? How do we find them?

(34) linear and quadratic approximations of a function? the Taylor polynomial of f(x) at x = a?

(35) Newton’s method? How does it compare to using Taylor polynomials?

(36) indeterminacies: quotient 0/0, ±∞±∞ , product 0 · (±∞), exponential 00,∞0, 1∞, difference (∞−∞)?

2. Theorems and Methods

Be able to write what each of the following theorems (laws, propositions, corollaries, etc.) says. Be prepared

to give examples for each theorem, and most importantly, to apply each theorem appropriately in problems.

(1) Finite Limits Laws (LLs): addition, subtraction, multiplication, division, basic examples, multi-

plication by a constant, powers, roots. (Be careful about the division law! What extra conditions

does it require?) x→ � means: x→ a, x→∞, or x→ −∞.

# Theorem Hypothesis Conclusion
1 LL+ lim

x→�
f1(x) = L1, lim

x→�
f2(x) = L2 lim

x→�
(f1(x)+f2(x))=L1+L2

2 LL∗c lim
x→�

f(x) = L, c ∈ R lim
x→�

(cf(x))=cL

3 LL∗ lim
x→�

f1(x) = L1, lim
x→�

f2(x) = L2 lim
x→�

f1(x)f2(x) = L1L2

4 LL÷ lim
x→�

f1(x) = L1, lim
x→�

f2(x) = L2, f2(x) 6= 0 for x ≈ a, L2 6= 0 lim
x→�

f1(x)

f2(x)
=
L1

L2

5 LL◦ lim
x→a

f1(x) = L1, lim
x→L1

f2(x) = L2, lim
x→a

f1(f2(x)) = L2

(2) Infinite Limit Laws (∞–LLs).

Name ∞-LL: Formula Example

1. addition ∞+∞ =∞ lim
x→∞

(x+ x2) = lim
x→∞

x+ lim
x→∞

x2 =∞+∞ ∞LL
= ∞

(−∞) + (−∞) = −∞ lim
x→∞

(−x− x2) = lim
x→∞

(−x) + lim
x→∞

(−x2) = (−∞) + (−∞)
∞LL
= −∞

∞−∞ undefined Never use ∞-LLs in such cases.

2. multipli- ∞ ·∞ =∞ lim
x→∞

x2 = lim
x→∞

x · lim
x→∞

x =∞ ·∞ ∞LL
= ∞

cation (−∞) · (−∞) =∞ lim
x→∞

(−x)2 = lim
x→∞

(−x) · lim
x→∞

(−x) = (−∞) · (−∞)
∞LL
= ∞

∞ · (−∞) = −∞ lim
x→∞

−x2 = lim
x→∞

x · lim
x→∞

(−x) =∞ · (−∞)
∞LL
= −∞

3. multipli- c · ∞ = +∞ if c > 0 lim
x→∞

(2x) = 2 lim
x→∞

x = 2 · ∞ ∞LL
= ∞

cation by c · ∞ = −∞ if c < 0 lim
x→∞

(−2x) = −2 lim
x→∞

x = −2 · ∞ ∞LL
= −∞

constant 0 · ∞ undefined Never use ∞-LLs in such cases.

4. addition c+∞ = +∞ ∀ c lim
x→∞

(−2 + x) = −2 + lim
x→∞

x = −2 +∞ ∞LL
= ∞

by constant c−∞ = −∞ ∀ c lim
x→∞

(−2− x) = −2− lim
x→∞

x = −2−∞ ∞LL
= −∞

5. division
c

+∞ = 0 ∀ c lim
x→∞

2

x
=

2

lim
x→∞

x
=

2

∞
∞LL
= 0

by ±∞ c

−∞ = 0 ∀ c lim
x→∞

2

−x =
2

lim
x→∞

(−x)
=

2

∞
∞LL
= 0

6. division
c

0+
= +∞ ∀ c > 0 lim

x→0

2

x2
=

2

0+

∞LL
= +∞, lim

x→0

−2

x2
=
−2

0+

∞LL
= −∞

by 0±
c

0−
= −∞ ∀ c > 0 lim

x→0

2

−x2 =
2

0−
∞LL
= −∞, lim

x→0

−2

−x2 =
−2

0−
∞LL
= +∞

0

0
,
c

0
undefined ∀c Never use ∞-LLs in such cases.

7. basic lim
x→∞

1

x
= 0, lim

x→−∞

1

x
= 0, lim

x→∞
x =∞, lim

x→−∞
x = −∞

lim
x→0+

1

x
= +∞, lim

x→0−

1

x
= −∞, lim

x→0

1

x
does not exist.
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In the infinite limit laws, an expression like “(−∞) + (−∞) = −∞” does not have a meaning on its

own, except in context, i.e. it refers only to the following situation and to nothing else:

Theorem “(−∞) + (−∞) = −∞”. “If for functions f(x) and g(x) we know that lim
x→�

f(x) = −∞,

lim
x→�

g(x) = −∞, then f(x)+g(x) also has a limit when x→ �: this limit is lim
x→�

(f(x) + g(x)) = −∞.”

Note that there are no infinite limit laws of the types ∞−∞,∞/∞, 0/0, 0 · ∞ since these symbolic

expressions do not make sense, and they are called indeterminacies.

(3) Continuity Laws (CLs). Hypothesis for all continuity theorems below: If f(x) and g(x) are

continuous at x = a, i.e. lim
x→a

f(x) = f(a) and lim
x→a

g(x) = g(a), then

# Theorem Name Conclusion Follows from

1 CL+ f(x) + g(x) is also continuous at x = a LL for sum

2 CL− f(x)− g(x) is also continuous at x = a LL for difference

3 CL∗ f(x)g(x) is also continuous at x = a LL for product

4 CL÷ (g(a) 6= 0) f(x)/g(x) is also continuous at x = a LL for ratio

5 CL∗c c · f(x) is also continuous at x = a LL for jumping constants

6 CL◦ (h(x) is continuous at b = f(a)) h(f(x)) is also continuous at x = a LL for composition

Note that all Continuity Laws (CLs) follow from the corresponding Limit Laws (LLs). The CLs

above allow us to perform algebraic operations (and compositions) on continuous functions. Thus,

we can construct more complex continuous functions from simpler continuous functions. To do this,

we need to have a starting collection of

(4) Basic Continuous Functions. All functions below are continuous on their domains:

# Function Algebraic Formula and Conclusion Follows from

1 Constants c continuous at ∀x LL for constants

2 Linear ax+ b continuous at ∀x LL for linear fn’s

3 Quadratic ax2 + bx+ c continuous at ∀x LL for quadratic fn’s

4 Power xn continuous at ∀x, ∀n = 1, 2, 3, ... LL for powers

5 Polynomial anx
n + an−1x

n−1 +· · ·+ a0 continuous at ∀x LL for polynomials

6 Rational
f(x)

g(x)
continuous where g(x) 6= 0 (f(x), g(x) - poly’s) LL for ratio, CL for poly’s

7 Root n
√
x continuous at ∀x where defined LL for roots

8 Exponential ax continuous at ∀x (a > 0) LL for exponentials

9 Logarithmic loga x, lnx continuous at ∀x > 0 (a > 0) LL for logarithmics

10 Trigono-

metric

sinx, cosx continuous at ∀x; tanx, cotx cont. on domain:

tanx: x 6=±π/2,±3π/2,±5π/2. . . ,(2n+1)π/2,

cotx: x 6= 0,±π,±2π,±3π . . . , nπ, n ∈ Z

LL for trig. fn’s

11 Inverse

Trigonomet-

ric

arcsinx, arccosx, arctanx, arccotx continuous on domain:

arcsinx : [−1, 1] → [−π/2, π/2], arccosx : [−1, 1] → [0, π],

arctanx : R→ (−π/2, π/2), arccotx : R→ (0, π)

LL for inverse trig. fn’s

(5) Theorem (Diff. ⇒ cont.) If f(x) is differentiable at a, then f(x) is continuous at a.

(6) Contrapositive Theorem. (Non-differentiable ⇒ non-continuous.) If f(x) is not continuous

at a, then f(x) is not differentiable at a.

(7) Converse Statement is False! Continuity does not guarantee differentiability. Counterexample?

(8) Differentiation Laws (DLs)

(a) DLc: (c)′ = 0 for any constant c.

(b) DLc (Power Rule): (xc)′ = c xc−1 for any constant c.

(c) DL∗c: If f(x) is a differentiable function, then (c f(x))′ = c f ′(x).
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(d) DL±: If f(x) and g(x) are differentiable, then their sum and difference are also differentiable:

(f(x) + g(x))′ = f ′(x) + g′(x), and (f(x)− g(x))′ = f ′(x)− g′(x).

(e) DL∗ (PR): If f(x) and g(x) are differentiable, then their product is also differentiable: (f(x)g(x))′ =

f ′(x)g(x) + f(x)g′(x).

(f) DL÷ (QR): If f(x) and g(x) are differentiable at x = a and g(a) 6= 0, then their quotient is

also differentiable:

(
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g2(x)
.

(g) DL ax: (ex)′ = ex and (ax)′ = ax · ln a for any constant a > 0.

(h) DL loga x: (lnx)′ = 1
x and (logb x)′ = 1

x ln b for all x > 0 and any constant b > 0.

(i) DL trig: (sinx)′ = cosx, (cosx)′ = − sinx, (tanx)′ = 1
cos2 x , (cotx)′ = −1

sin2 x
(domains?)

(j) DL arc-trig: (arcsinx)′ = 1√
1−x2

, (arccosx)′ = −1√
1−x2

, (arctanx)′ = 1
1+x2 , (arccotx)′ = −1

1+x2

(domains?)

(k) DL−1: The derivatives of inverse functions y = f(x) and x = g(y) are reciprocal: f ′(x) =
1

g′(y)
.

(l) DL ◦ (CR): (f(g(x))′ = f ′(g(x)) · g′(x).

(m) CR shortcuts: (fa(x))′ = afa−1(x)f ′(x),
1

f(x)
= − f

′(x)

f2(x)
, and (ln f(x))′ =

f ′(x)

f(x)
.

(9) L’Hospital’s Rule (LH): If limx→� f(x) = limx→� g(x) = 0 or limx→� f(x) = ±∞ = limx→� g(x),

then we can attempt to find the LHS limit below by evaluating instead the RHS limit below:

lim
x→�

f(x)

g(x)

( 0
0 or ±∞±∞ )

= lim
x→�

f ′(x)

g′(x)
·

If the limit on the RHS does not exist (or is more complicated to find), then try something else.

If you get a determinate (i.e., if LLs work!), do NOT apply LH. If you get an indeterminate that

is NOT a quotient one, then you need to work to rewrite the expression f(x)
g(x) into (eventually) a

quotient indeterminate in order to be able to apply LH.

(10) Linear Approximation at x = a: f(x) ≈ f(a) + f ′(a)(x− a).

(11) Quadratic Approximation at x = a: f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2.

(12) Taylor Polynomial of f(x) at x = a:

Tn(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n.

(13) Famous Taylor Polynomials at a = 0:

ex ≈ 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·+ xk

k!
= Tk(x)

sinx ≈ x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)k

x2k+1

(2k + 1)!
= T2k+1(x)

cosx ≈ 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)k

x2k

(2k)!
= T2k(x)

ln(1 + x) ≈ x

1
− x2

2
+
x3

3
− x4

4
+
x5

5
+ · · ·+ (−1)k+1x

k

k
= Tk(x)
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(14) Famous Constants1 Obtained through Taylor Polynomials by Plugging in x = 1:

e ≈ 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·+ 1

k!
= Tk(1)

sin 1 ≈ 1− 1

3!
+

1

5!
− 1

7!
+ · · ·+ (−1)k

1

(2k + 1)!
= T2k+1(1)

cos 1 ≈ 1− 1

2!
+

1

4!
− 1

6!
+ · · ·+ (−1)k

1

(2k)!
= T2k(1)

ln 2 ≈ 1

1
− 1

2
+

1

3
− 1

4
+

1

5
+ · · ·+ (−1)k+1 1

k
= Tk(1)

(15) Newton’s Method: To approximate a root of a differentiable function, start close to the root with

a guess of x1, and consecutively apply the formula below to get closer and closer to the root by

x1, x2, x3, . . . , xk, etc.:

xn = xn−1 −
f(xn−1)

f ′(xn−1)
·

3. Problem Solving Techniques

(1) How do we find lim
x→a

f(x) when the (finite) LLs fail?

(a) If f(x) =
g(x)

h(x)
and “plugging in a” yields

0

0
, try factoring polynomials and rationalizing expres-

sions with square roots. The idea is to end up with (x−a) both in numerator and denominator,

cancel it, and then again attempt to apply LLs.

(b) If f(x) is a piecewise-defined function (i.e. given by different formulas on several intervals), try

first to find the left-hand and the right-hand limits separately, and then compare them to see if

they are equal (or if they exist, for that matter).

(c) If f(x) is given by a formula involving absolute values, again proceed by finding and comparing

the two one-sided limits.

(2) How do we determine if a function is continuous at a? By definition of continuity, there are

3 things to check:

(a) Find lim
x→a

f(x) by following either limits laws or the techniques suggested above. (If it doesn’t

exist, then the function has no chance of being continuous at a. If it exists but is an infinite

limit ±∞, again the function is not continuous at a; in fact, it has an infinite discontinuity at

a.)

(b) Find f(a). If f is not defined at a, then the function is not continuous at a.

(c) If the above two steps yield two finite numbers, compare them to check if they are equal:

lim
x→a

f(x) = f(a). If yes, the function is continuous at a; if not, the function is not continuous

at a.

(3) How do we determine if a function is continuous at a without using the definition of

continuity? We use CLs if applicable. For example, the function f(x) = 1
x−3 · cosx + 6x3 is

continuous as 2 because all comprising functions (rational, trigonometric and polynomial) are all

continuous at 2. However, the function is not continuous at 3. (Why?)

(4) How do we find lim
x→�1

f(x) when infinite limits are involved, but ∞–LLs fail?

1For the super die-hards: can you obtain π through some Taylor polynomial? The answer, of course, is yes, but which

function will be the right one?
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(a) When finding the limit of a rational function: lim
x→±∞

P1(x)

P2(x)
(here P1(x) and P2(x) are polyno-

mials), we know that ∞/∞ doesn’t make sense. So, we factor out the highest powers of x from

both top and bottom polynomials, cancel, and then apply LLs again. (Note: In the end, all

that will matter will be the leading terms of the two polynomials - no other terms will survive

the above operations.) Similar ideas apply to any other fractions which involve polynomials

and possibly radicals.

(b) If ∞–LLs produce expressions involving ∞−∞, we know that this doesn’t make sense, so we

look for a different approach. If polynomials are involved, factoring out the highest power is a

good start. If square roots are involved, rationalizing might help. If two or more fractions are

involved, putting them under a common denominator to arrive at one single fraction is the first

step; then apply other techniques mentioned above.

(c) If ∞–LLs produce an expression of the type 0 · ∞, we know that this doesn’t make sense, so

we look for a different approach. Each example of this type has to be considered individually;

most likely, we will end up factoring or rationalizing in search of common things to cancel, and

after that we will attempt again to apply LLs.

(5) How do we sketch graphs of functions f(x)?

(a) If you recognize that the graph of f(x) can be obtained from a graph of a well-known function

via horizontal and/or vertical shifts, go for it! If the original (well-known) function already has

vertical or horizontal asympotets, make sure to shift them too and indicate that the resulting

function has these-and-these asymptotes.

(b) If the graph of f(x) can’t be obtained via the above shifts (e.g. f(x) is a complicated function,

or you just forgot how to sketch the graph of the “well-known” function), proceed as follows:

(i) First, look for “zeros” of the functions, i.e. for its x-intercepts: try to solve f(x) = 0 if

possible. If f(x) is a fraction, such solutions will be produced in the numerator. (The

denominator will be irrelevant in this step.) It is also good to find the y-intercept, by

setting x = 0 in f(x).

(ii) Second, look for vertical asymptotes: these will appear where f(x) has an infinite (at

least) one-sided limit, i.e. if lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞; then the vertical line

x = a is such an asymptote. If f(x) is a fraction, such solutions will be produced by the

roots of the denominator. (The numerator will be irrelevant in this step.)

(iii) Third, look for horizontal asymptotes: these will appear where f(x) has a finite limit when

x→ ±∞, i.e. if lim
x→±∞

f(x) = L; then the horizontal line y = L is such an asymptote. If

f(x) is a fraction, both numerator and denominator will be involved in this step.

(iv) Finally, draw the vertical and horizontal asymptotes, mark the x-intercepts (and the y-

intercept if applicable); draw the function so that it passes through the x- and y-intercepts

and respects all asymptotes as found above. Be careful nearby the vertical asymptotes to

reflect whether a given one-sided limit is +∞ or −∞, correspondingly. It doesn’t hurt to

plot several other points in each interval between asymptotes and x-intercepts, to make

your graph more precise and make sure you haven’t done any silly calculation mistakes

in the above steps.

(6) How do we prove statements about limits using the limit definitions?

We pray that such a problems is not on the midterm. If this doesn’t help, we follow the steps below.

(a) Consider the type of limit you are given: lim
x→�1

f(x) = �2 and decide what your goals will be

depending on what �2 is.
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• If �2 = L - a finite number, then your function “wants to be close to this number L”...

how close? - ε-close. Your goals will be therefore ε-goals around L, which can be written

in one of the following three equivalent forms:

f(x) is within ε of L ⇔ L− ε < f(x) < L+ ε ⇔ |f(x)− L| < ε

• If �2 = +∞, then your function “wants to be close to +∞”... To say “ε-close to +∞”

doesn’t make a whole lot of sense! Instead, we want f(x) to get as large as we please.

Hence, our goals will be M -goals, where M > 0. Such a goal can be written simply as

f(x) > M .

• If �2 = −∞, then your function “wants to be close to −∞”... To say “ε-close to −∞”

doesn’t make a whole lot of sense! Instead, we want f(x) to get as small as we please.

Hence, our goals will be M -goals, where M < 0. Such a goal can be written simply as

f(x) < M .

(b) Decide next what type of answers you are looking for depending on what �1 is.

• If �1 = a - a finite number, then x “wants to be close to this number a”... how close? -

δ-close. Your answers will be therefore δ-intervals around a, which can be written in one

of the following three equivalent forms:

x is within δ of a ⇔ a− δ < x < a+ δ ⇔ |x− a| < δ.

• If �1 = +∞, then x “wants to be close to +∞”... To say “δ-close to +∞” doesn’t make

a whole lot of sense! Instead, we want x to be large enough. Hence, our answers will be

M -answers, where M > 0, written simply as x > M .

• If �1 = −∞, then x “wants to be close to −∞”... To say “δ-close to −∞” doesn’t make

a whole lot of sense! Instead, we want x to be small enough. Hence, our answers will be

M -answers, where M < 0, written simply as x < M .

• Summary of (ε, δ)–Definition Types of Goals and Answers. Here are all 9 possible

types of limits (3 possible goals, and 3 possible answers) for lim
x→�1

f(x) = �2:

limit �2 goal for f(x) x→ �1 answer for x
L ε-goal around L x→ a δ-interval around a

+∞ M -goal, M > 0 x→ +∞ N -answer, N > 0

−∞ M -goal, M < 0 x→ −∞ N -answer, N < 0

(c) Put together your goals and your types of answers to see what you are really after. And then

proceed either algebraically or graphically.

(i) The algebraic way is more rigorous, but then less insightful. It goes as follows.

Step I: Conjecture your limit.

Step II: Write your goal for your function, e.g. we want 5 − ε < f(x) < 5 + ε (here

�2 = L = 5), or f(x) < M (here �2 = −∞ and M < 0). Next, try to solve these

inequalities for x. Keep in mind that sometimes considerations like x > 0 or x < 0 can

help eliminate irrelevant information. Next, put your answer in the form of δ-interval

around a, or in the form of x > M or x < M , depending on what type of answer you are

looking for. (Recall that sometimes when looking for δ, we have to take the smaller of

two distances from a in order to ensure that our δ-interval is centered at a.) Make sure

you announce what your final δ or M answer is, do NOT forget to state your conclusion:

The above steps show that indeed blah-blah ... ( lim
x→�1

f(x) = �2)
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(ii) The geometric way is less rigorous, but then more intuitive. Start by sketching a graph of

your function (you may have to shift graphs of simpler functions or plot several points for

your function). Then mark your goal: either an ε-strip around L, or an M -region (above

or below M depending on whether your limit is +∞ or −∞.)

Mark the portion of the graph which lies inside your goal area. Project this portion onto

the x-axis, i.e. mark all x’s above which f(x) falls into the goal area. These x’s should be

grouped in one or more intervals. Make sure you eliminate the irrelevant intervals for x

(e.g. if x→ −∞, then intervals with positive x’s are irrelevant; if x→ 7, then an interval

around 2 is probably also irrelevant, but an interval around 7 will be VERY relevant!)

You should be left with only one relevant interval I for x.

Using the formula for the function f(x), find precisely what this I is. This usually

entails the following calculations: f(x) = L + ε (when the function enters/exits “from

above” the ε-strip around L); or f(x) = L − ε (when the function enters/exits “from

below” the ε-strip around L); or f(x) = M (when the function enters/exits the M -goal

region). Solve this for x to find your “good interval” I - check with your graph to make

sure that what you obtain makes sense.

Finally, translate this into the type of answer you are expected to obtain: a− δ < x <

a+ δ, or x < M or x > M , and state this answer clearly. (Make sure that all of the above

calculations and work with the graph is recorded properly in your solution!) Conclude by

stating that therefore blah-blah... ( lim
x→�1

f(x) = �2)

(7) How do we find derivatives from the definition? Read carefully if you are being asked to find

a specific derivative f ′(a), or the whole derivative function f ′(x). In each case, you have two choices

how to proceed, as listed below.

(a) f ′(a) = lim
x→a

f(x)− f(a)

x− a
· Here a is a constant and x moves towards a, so we expect that x will

disappear and a will remain in the final result for f ′(a).

(b) f ′(a) = lim
h→0

f(a+ h)− f(a)

h
· Here a is a constant and h moves towards 0, so we expect that h

will disappear and a will remain in the final result for f ′(a). This formula is nothing else but

formula (a) where x is replaced by a+ h.

(c) f ′(x) = lim
h→0

f(x+ h)− f(x)

h
· Here x is viewed as a constant and h moves towards 0, so we

expect that h will disappear and x will remain in the final result for the derivative function

f ′(x). This formula is nothing else but formula (b) where a is replaced by x.

(d) One can also find f ′(x) by first finding f ′(a) = lim
x→a

f(x)− f(a)

x− a
; in the result of this calculation

x will disappear and only a will remain; in this final formula replace a by x to obtain a formula

for the whole derivative function f ′(x).

(8) How do we find equations of tangent lines?

(a) First find the corresponding derivative f ′(a): this will be the slope of your tangent line.

(b) Next use the point–slope formula for the point P (a, f(a)) and for the slope f ′(a) from part (a):

(1) f ′(a) =
y − f(a)

x− a
⇔ y − f(a) = f ′(a)(x− a)·

Here a and f(a) are constants, and x and y are variables in the equation for your tangent line.

Where suitable, multiply through and simplify to obtain a formula of the type:

y = f ′(a) · x+ b.
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(9) How do we find all the tangents lines to the graph of f(x) which are parallel to some

line y = mx+ b?

(a) First find the slope m of the given line; be careful with this since the line may not be given in

the standard “line-equation” form as above and you may have to rewrite it.

(b) Find the derivative f ′(x).

(c) Next, set f ′(x) = m, where m is the found slope of the line above, and solve it for x.

(d) Finally, let’s say you found several solutions x1, x2... etc. What remains is to find the cor-

responding points on the graph of f(x) through which the wanted tangent lines will pass:

P1(x1, f(x1)), P2(x2, f(x2)), etc. If the problem asks for finding the equation of these tangent

lines, well, proceed now with the point-slope formula as before.

(10) For the hot-shots only:

How do we find all tangent lines to the graph of f(x) passing through a point (c, d)?

(a) First find the derivative f ′(x).

(b) Next, set the point-slope formula for the tangent line:

f ′(a) =
y − f(a)

x− a
·

You will not know at this moment what a is (that’s what you want to find in the end), nor what

x or y are (these are the variables in the equation of the tangent line).

(c) Substitute the point (c, d) into the above equation ((c, d) is supposed to lie on your tangent line,

hence substituting x = c and y = d must work):

f ′(a) =
d− f(a)

c− a
·

At this point, you must realize that only a is left “unknown” in this equation; everything else

must be a number; thus, we can solve this equation for a.

(d) Now that you know what a is (are), find the equation of the corresponding tangent line(s) at

(a, f(a)). The problem may be asking for less: just find the points of tangency (a, f(a)).

(11) How do we sketch graphs of the derivative function f ′(x) given the graph of f(x)?

(a) Find where the given function f(x) is not differentiable; at these x’s f ′(x) will not exist. There

are many different reasons for f ′(x) not to exist. Here follow some such reasons:

• f(x) is not defined at x = a. Then we can’t even talk about the derivative at x = a.

• f(x) is defined at x = a but is not continuous there. Then the contrapositive theorem

implies that f(x) is not differentiable at x = a. No matter what type of discontinuity

f(x) has at x = a, f ′(a) will not exist. An infinite discontinuity of f(x) (i.e. f(x) has a

vertical asymptote x = a) usually translates into a vertical asymptote for f ′(x) at x = a.

A jump or removable discontinuity of f(x) usually translates into a jump or removable

discontinuity for f ′(x). Each case is treated separately to see what happens with f ′(x).

• f(x) is defined and continuous at x = a, but is not “smooth” there, i.e. has a cusp(corner).

Usually here either the two one-sided tangents exist at x = a but have different slopes,

or there is a vertical tangent at x = a. In the former case, this will translate into a jump

discontinuity of f ′(x); in the latter case, this translates into a vertical asymptote of f ′(x).

• f(x) looks “smooth” at x = a, but has a vertical tangent there. Again, this will translate

into a vertical asymptote of f ′(x).
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(b) After marking all x’s where f ′(x) does not exist (including possible vertical asymptotes, etc.),

we move on to graphing f ′(x) where it exists. First find all places where the tangents to

f(x) are horizontal and mark the corresponding 0’s on the graph of f ′. Next determine the

intervals where f(x) increases i.e. has positive tangent slopes, and where f(x) decreases, i.e.

has negative tangent slopes. In the former case, f ′(x) will be positive, and in latter case, f ′(x)

will be negative. In each such interval, answer the following two questions: whether the tangent

slopes are positive or negative, and whether the tangent slopes themselves are increasing or

decreasing. Translate this into the corresponding property of f ′(x).

(c) For more precise drawing, in each of the above intervals mark several tangent lines, guestimate

their slopes and mark the corresponding points on the graph of f ′(x). Connect all these marked

points to obtain the graph of f ′(x). Don’t forget the places where f ′(x) was not defined!

(12) How do we find derivatives using DLs? If you are given f(x) via one formula and you are not

asked to use the definition of derivative, you apply DLs. However, for the purposes of this Midterm

1, the only DLs allowed are listed previously in this handout: DLs for polynomials, power rule, DLs

for addition, difference and multiplication by a constant.

(a) First see if you can further simplify the given formula. In particular, try to avoid applying the

Quotient Rule whenever possible because it is prone to errors. In practice this mean: try to get

rid of denominators by either splitting fractions and then simplifying each fraction separately

(see formulas for fraction manipulations below), or by direct cancellation of common stuff in

the numerator and denominator, or by moving the denominator into the numerator: e.g. x3 in

the denominator becomes x−3 in the numerator.

(b) If you are going to apply the Power Rule, turn all expressions like n
√
x
m

into the standard form

x
m
n . Again, such expressions in the denominator should move into the numerator wherever

suitable by flipping the sign of the power: n
√
x
m

in the denominator becomes x−
m
n in the

numerator.

(c) Look at your function f(x) to figure out its components, the simpler pieces it is made of, and

decide which DL(s) you are going to use. In some cases, you may have to apply several DLs one

after the other, so keep good track of your intermediate results, or else your calculations will

be untraceable. A good strategy is to name some of the simpler components of f(x), e.g. g(x),

h(x), etc. and perform some of the necessary differentiation on these functions on the side and

then put back your results together. To reduce errors and to make clear that you do know the

DLs, it is always good to write the DL formula in terms of functions at first, e.g.

((5x+ 2) · x3)′
PR
= (5x+ 2)′ · x3 + (5x+ 2) · (x3)′ = ...

4. Useful Formulas and Miscellaneous Facts

(1) Quadratic formula: useful for factoring quadratic polynomials as a(x−x1)(x−x2), where x1 and

x2 are the two roots of the polynomial, and a is the leading coefficient. Useful also for graphing

quadratic polynomials: will yield the x-intercepts (or tell you that they don’t exist.)

(2) Rationalizing formula:
√
A−
√
B =

(
√
A−
√
B)(
√
A+
√
B)√

A+
√
B

=
(A−B)√
A+
√
B

.

(3) Factorization formulas: A2 −B2 = (A−B)(A+B) and A3 −B3 = (A−B)(A2 +AB +B2).

(4) Binomial formulas: (A+B)2 = A2 + 2AB +B2, (A+B)3 = A3 + 3A2B + 3AB2 +B3.
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(5) Putting fractions under a common denominator. The most general formula is as follows:
A

B
+
C

D
=
AD +BC

BD
. Yet, it is worth noting that if fractions already share something in their

denominators, it will be faster to take this into account, e.g.

2x+ 1

x2
+

x3

x(x− 1)
=

(2x+ 1)(x− 1) + x · x3

x2(x− 1)
=
x4 + 2x2 − x− 1

x2(x− 1)
.

(6) Absolute value inequalities. Note the following expressions which mean the same things:

(a) |x| < A ⇔ −A < x < A;

(b) |x−B| < A ⇔ −A < x−B < A ⇔ B −A < x < B +A ⇔ x ∈ (B −A,B +A);

(c) |3x2 − 10| < 5 ⇔ −5 < 3x2 − 10 < 5 ⇔ 5 < 3x2 < 15 ⇔
√

5/3 < |x| <
√

15/3

⇔
√

5/3 < x <
√

15/3 (when x ≥ 0), or
√

5/3 < −x <
√

15/3 (when x < 0).

As a final answer, the original inequality is satisfied when x ∈ (
√

5/3,
√

5) ∪ (−
√

5,−
√

5/3).

(d) |2f(x)− 7| < 0.5 ⇔ −0.5 < 2f(x)− 7 < 0.5 ⇔ 3.25 < f(x) < 3.75 ⇔ f(x) ∈ (3.25, 3.75).

(7) Trigonometric functions: domains of definition, ranges, graphs, periods; where they increase,

decrease, values at x = 0, π/3, π/4 and so on “prominent” numbers; vertical asymptotes (if any);

trigonometric identities; radians versus degrees.

(8) Exponential and Logarithmic functions: domains of definition, ranges, graphs; for which bases

do these function increase/decrease, cx and logc x are inverse functions of each other, basic identities.

(9) Manipulations with Fractions

(a) Splitting fractions:
a+ b

c
=
a

c
+
b

c
;
ab

cd
=
a

c
· b
d

;

(b) Wrong formula:
a

b+ c
6= a

b
+
a

c
·

(c) Putting fractions under a common denominator:
a

b
+
c

d
=
ad+ bc

bd
.

(d) When denominators have something in common:
a

be
+

c

de
=
ad+ bc

bde
.

(e) “Fractions over fractions”:
a

c
:
b

d
=

a
b
c
d

=
ad

bc
;
a
c
d

=
ad

c
;
a
b

c
=

a

bc
.

I cannot conceive of any other operation on fractions! If you think of one, let me know!

(10) Manipulations with Exponentials and Logarithms

(a) ab+c = ab · ac, a
b

ac
= ab−c, (ab)c = abc, a

b
c =

c
√
ab, 1

c√
ab

= 1

a
b
c

= a−
b
c , a0 = 1.

(b) ln (ex) = x, eln x = x, ln(ab) = b ln a.

(11) Trigonometric Formulas

(a) sin2x+ cos2x = 1;

(b) tanx =
sinx

cosx
; cotx =

cosx

sinx
;

(c) sin(π2 − x) = cosx; cos(π2 − x) = sinx;

(d) the values of sinx, cosx, tanx and cotx at all “prominent” x’s: 0, π/6, π/4, π/3, π/2, π, etc.
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5. Cheat Sheet

For the midterm, you are allowed to have a “cheat sheet” - one page (which means only on one side) of a

regular 8× 11 sheet. You can write whatever you wish there, under the following conditions:

• The whole cheat sheet must be handwritten by your own hand! No xeroxing, no copying, (and

for that matter, no tearing pages from the textbook and pasting them onto your cheat sheet.)

• Any violation of these rules will disqualify your cheat sheet and may end in disqualifying your

midterm. I may decide to randomly check your cheat sheets, so let’s play it fair and square. :)

• Don’t be a freakasaurus! Start studying for the exam several days in advance, and prepare your

cheat sheet at least 2 days in advance. This will give you enough time to become familiar with your

cheat sheet and be able to use it more efficiently on the exam.
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